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Discovery of Superconductivity
An infinitely high electrical conductivity is unthinkable because (1) a crystal 

without a certain degree of disorder is inconceivable according to the 

second law of thermodynamics, and (2) even in the absence of phonon and 

defect scattering, electron-electron scattering will still cause resistance. 

However, in the year 1911, Kamerlingh Onnes discovered that the electrical 

resistance of mercury (Hg) approaches an unmeasurably small value when 

it is cooled below 4.2 K. This phenomenon is called superconductivity.

Dark shaded elements are superconducting 
only under a high pressure 



Magnetic Responses 

Vanishing resistance implies that the magnetic flux B･S through the closed 

loop may not alter after cooling and after switching off the external field Bext. 



Because of the Meissner-Ochsenfeld effect, the magnetic state of a super- 

conductor can be described as ideal diamagnetism. Persistent surface 

currents maintain a magnetization M = −Hext in the interior, and this 

magnetization is exactly opposite to the applied magnetic field Hext. 

Meissner-Ochsenfeld Effect

If the magnetic field strength Hext is 

further increased, then at a critical field 

strength Hc it is energetically more 

favorable for the material to convert to 

the normally conducting phase, in 

which the magnetic field penetrates 

the material. The phase boundary 

between superconducting and normally 

conducting states corresponds to the 

critical magnetic field Hc (T). 

SC

Normal



The transition of a metal from its normal state to a superconducting state 

has nothing to do with a change of crystallographic structure. What actually 

occurs in the transition is a thermodynamic change of state, or phase 

transition, which is clearly manifest in other physical quantities. The specific 

heat as a function of temperature, for example, changes discontinuously at 

the transition temperature Tc . The specific heat cn of a normally conducting 

metal is composed of a lattice-dynamical part cnl and an electronic part cne as

Change on Specific Heat 

At the transition to the superconducting state 

the lattice dynamical part cnl remains 

constant and the electronic part ces must be 

replaced by a component which decreases 

exponentially, so for T < Tc 

ces = 𝛾TS e-A/kT

ces 



The energy gap of superconductors is of entirely different origin and nature 

than the energy gap of insulators. In an insulator the energy gap is caused 

by the electron-lattice interaction. This interaction ties the electrons to the 

lattice. In a superconductor the important interaction is the electron-

electron interaction which orders the electrons in k space with respect to 

the Fermi gas of electrons. The energy gap decreases continuously to zero 

as the temperature is increased to the transition temperature Tc, indicating 

a second-order phase transition. 

Superconducting Energy Gap  



It has been observed that the critical temperature of superconductors varies 

with isotopic mass. In mercury Tc varies from 4.185 K to 4.146 K as the 

average atomic mass M varies from 199.5 to 203.4 atomic mass units. The 

transition temperature changes smoothly when we mix different isotopes of 

the same element. The experimental results within each series of isotopes 

may be fitted by a relation of the form MαTc = constant. From the dependence 

of Tc on the isotopic mass we learn that lattice vibrations and hence electron-

lattice interactions are deeply involved in superconductivity. The original BCS 

model gave the result Tc ∝ 𝜃Debye  ∝ M-1/2, so that α = ½, but the inclusion of 

coulomb interactions between the electrons changes the relation. 

Isotope Effect



Free Energies

The free energy density FN of a nonmagnetic 

normal metal is approximately independent 

of the intensity of the applied magnetic field 

Ba. At a temperature T < Tc the metal is a 

superconductor in zero magnetic field, so 

that FS(T, 0) is lower than FN(T, 0) by

with

and

At a finite T, the normal and super-

conducting phases are in equilibrium when 

the magnetic field is such that their free 

energies F = U − TS are equal. Experimental 

curves of the free energies of the two 

phases for aluminum are shown in the left.



Maxwell

London Theory 

We postulate that in the superconducting state the current density is 
proportional to the vector potential A of the local magnetic field 

The London equations are a set of phenomenological equations in an 

attempt to describe the Meissner effect. 

j = - [c/(4𝛑𝜆L
2)] A

𝝯xj = - [c/(4𝛑𝜆L
2)] 𝝯xA = - [c/(4𝛑𝜆L

2)] B

𝝯x𝝯xB = (4𝛑/c) 𝝯xj = - [1/(𝜆L
2)] B

𝝯2B = B/(𝜆L
2)

In one dimensional case, we have



London Penetration Depth 

x

B(0)

An applied magnetic field Ba will penetrate a thin film fairly uniformly if 

the thickness is much less than λL; thus in a thin film the Meissner effect is 

not complete. In a thin film the induced field is much less than Ba, and 

there is little effect of Ba. It follows that the critical field Hc of thin films in 

parallel magnetic fields will be very high. 

In the pure superconducting state the only field allowed is exponentially 
damped into the bulk  from an external surface. 



Coherence Length 
The coherence length 𝜉 is a measure of the distance within which the super-

conducting electron concentration cannot change drastically in a spatially 

varying magnetic field. Any spatial variation in the state of an electronic 

system requires extra kinetic energy. A modulation of an eigenfunction 

increases the kinetic energy because the modulation will increase the 

integral of d2𝜑/dx2 . 

The increase of energy required to modulate is ℏ2kq/2m. If this increase 

exceeds the energy gap Eg, superconductivity will be destroyed. The critical 

value q0 of the modulation wavevector is given by 

Define an intrinsic coherence length 𝜉0 = 1/q0, then

Assume a strongly modulated wavefunction 𝜑(x) = 2-1/2(ei(k+q)x + eikx), then 

. The kinetic energy is 



The coherence length 𝜉 and the actual penetration depth λ depend on the 

mean free path 𝓁 of the electrons measured in the normal state; the 

relationships are indicated in figure below. They describe the structure of 

the transition layer between normal and superconducting phases in contact. 

In impure materials and in alloys the coherence length 𝜉 is shorter than 𝜉0. 

When the superconductor is very impure, with a very small 𝓁, then 𝜉≃ 

(𝜉0𝓁)1/2 and λ ≃ λL(𝜉0/𝓁)1/2, so that λ/𝜉 = λL/𝓁. This is the “dirty 

superconductor” limit. 

λ and 𝜉 



Minimize the total free energy ∫dV FS(r) with respect to variations in ψ(r), 

then

This integral is zero if the term in brackets is zero: 

This is Ginzburg-Landau equation; it resembles a Schrödinger equation for ψ. 

The intrinsic coherence length 𝜉 can be defined from the GL equation with A 

= 0 and neglecting            , in one dimension  the above GL equation becomes     

,   ψ =  C    and                               . 

Consider the situation representing the boundary of a type I superconductor 
and a normal metal. Retain the nonlinear term           in the GL equation: 

with boundary conditions ψ(0) = 0, ψ(∞) = ψ0 , 

Coherence Length 

then



Deep inside the superconductor the free energy is a minimum when

                       , so 

FS is the stabilization free energy density of the superconducting state at 

the thermodynamic critical field Hc. 

Consider the penetration depth of a weak magnetic field (B << Hc) into a 
superconductor. We assume that |ψ| in the superconductor is equal to 
|ψ0| , the value in the absence of a field. Then the equation for the 
supercurrent flux reduces to 

which is just the London eq. 
with the penetration depth 

The dimensionless ratio of the two characteristic lengths, the 
penetration depth λ and coherence length 𝜉, is an important parameter in 
the theory of superconductivity. Then

Penetration Depth 



Upper Critical Field 

At the onset of superconductivity |ψ| is small and the GL equation can be 
written as: 

,    or with A = B(0, x, 0)

We look for a solution in the form exp[i(kyy + kzz)]𝜑(x) and find 

,

This is the equation for an harmonic oscillator. 



The largest value of the magnetic field B for which solutions exist is given 

by the lowest eigenvalue, which is

where ω is the oscillator frequency qB/mc. 

With kz set equal to zero, 

In terms of the thermodynamic critical field Hc and the GL parameter                : 

When                       , a superconductor has Hc2 > Hc and is said to be of type II. 

This says at the upper critical field (Hc2) the flux density is equal to one flux 

quantum per area 2𝜋𝜉2, consistent with a fluxoid lattice spacing of the order 

of 𝜉. 

In terms of the flux quantum                         and             



The basis of a quantum theory of superconductivity was laid by the classic 

1957 papers of Bardeen, Cooper, and Schrieffer, which includes:

BCS Theory of Superconductivity 

1.  An attractive interaction manifests between electrons.

The central feature of the BCS state is that the one-particle orbitals are 

occupied in pairs: if an orbital with wavevector k and spin up is occupied, 

then the orbital with wavevector −k and spin down is also occupied. If k↑ is 

vacant, then−k↓ is also vacant. The pairs are called Cooper pairs and have 

spin zero as well as many attributes of bosons. 



An electron moving through a conductor will 

attract nearby positive charges in the lattice. This 

deformation of the lattice causes another 

electron, with opposite spin, to move into the 

region of higher positive charge density. The two 

electrons then become correlated. Because 

there are a lot of such electron pairs in a 

superconductor, these pairs overlap very 

strongly and form a highly collective condensate. 

In this "condensed" state, the breaking of one pair will change the energy of 

the entire condensate, not just a single pair. The energy required to break any 

single pair is related to the energy required to break all of the pairs. The 

electrons stay paired together and flow as a whole will not experience 

resistance. Thus, the collective behavior of the condensate is a crucial 

ingredient necessary for superconductivity.

Electron Lattice Interaction



2.  The electron-lattice-electron interaction leads to an energy gap of 

the observed magnitude. 

3. The penetration depth and the coherence length emerge as natural 

consequences of the BCS theory. 

4. The criterion for the transition temperature of an element or alloy 

involves the electron density of orbitals D(ϵF) of one spin at the Fermi 

level and the electron-lattice interaction U, which can be estimated 

from the electrical resistivity because the resistivity at room 

temperature is a measure of the electron-phonon interaction. For 

UD(ϵF) << 1 the BCS theory predicts 

                                           Tc = 1.14𝜃 exp[−1/UD(ϵF)] 

      where 𝜃 is the Debye temperature and U is an attractive interaction. 

5. Magnetic flux through a superconducting ring is quantized and the 

effective unit of charge is 2e rather than e. 



Let ψ(r) be the particle probability amplitude. We suppose that the pair 

concentration n = ψ*ψ = constant. Then, we can write

From the Hamilton equations of mechanics, 

so that the electric current density is 

We can thus obtain 

the London equation.𝝯 ×

We recall that the Meissner effect is a consequence of the London equation, 

which we have here derived. 

EM Field Intensity Approximation 



Flux Quantization in a Superconducting Ring 

The flux through the ring is the sum of the 

flux Φext from external sources and the flux 

Φsc from the superconducting currents 

which flow in the surface of the ring; 

Φ = Φext + Φsc . 

The Meissner effect tells us that B and j are 

zero in the interior. So, we will have

The change of phase on going around the ring is

where s is an integer. 
By the Stokes theorem, 

By setting q = -2e,  the quantum of flux in a superconductor (fluxoid) 
is



Type II or hard superconductors, usually 

alloys, have superconducting electrical 

properties up to a field denoted by Hc2. 

Between the lower critical field Hc1 and 

the upper critical field Hc2 the flux 

density B ≠ 0 and the superconductor is 

threaded by flux lines and is said to be 

in the vortex state. 

Pure specimens of many materials 

exhibit this behavior; they are 

called type I superconductors or, 

formerly, soft superconductors. 

The values of Hc are always too 

low for type I superconductors to 

have application in coils for 

superconducting magnets.

Types of Superconductivity



Type II Superconductors (  )

H

Normal state cores
Superconducting region

There is no difference in the mechanism of superconductivity in type I and 

type II superconductors. Both types have similar thermal properties at the 

superconductor-normal transition in zero magnetic field. But the Meissner 

effect is entirely different. 



There is no chemical or crystallographic difference between the normal 

and the superconducting regions in the vortex state. The vortex state is 

stable when the penetration of the applied field into the superconducting 

material causes the surface energy to become negative. A type II 

superconductor is characterized by a vortex state stable over a certain 

range of magnetic field strength; namely, between Hc1 and Hc2. 

Vortex State in Type II Superconductor 



Types of Superconductors
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• elemental superconductors 
predicted  in 1950s by Abrikosov
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MgB2 5 185 37 14
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Single Particle Tunneling 

Preparation of an Al/Al2O3/Sn sandwich 

Two metals, A and B, separated by 
a thin layer of an insulator C ~10 Å. 

If the insulating barrier is sufficiently thin (less than 10 or 20 Å) there is a 

significant probability that an electron which impinges on the barrier will 

pass from one metal to the other: this is called tunneling. 

(a) Linear current-voltage relation for 

junction of normal metals separated 

by oxide layer; (b) current-voltage 

relation with one metal normal and 

the other metal superconducting. 



In the superconductor there is an energy gap centered at the Fermi level. 

At absolute zero no current can flow until the applied voltage is V = Eg /2e 

= ∆/e. The gap Eg corresponds to the break-up of a pair of electrons in the 

superconducting state, with the formation of two electrons, or an electron 

and a hole, in the normal state. The current starts when eV = ∆ . 

Supercurrent Tunneling 

The density of states and the current-voltage characteristic for a tunneling 
junction. 



Josephson Superconductor Tunneling 
The tunneling of superconducting electron pairs from a superconductor 

into another superconductor has produced many remarkable effects: 

Dc Josephson effect. A dc current flows across the junction in the absence 

of any electric or magnetic field. 

Ac Josephson effect. A dc voltage applied across the junction causes rf 

current oscillations across the junction. This effect has been utilized in a 

precision determination of the value of e/ℏ. Further, an rf voltage applied 

with the dc voltage can then cause a dc current across the junction. 

Macroscopic long-range quantum interference. A dc magnetic field applied 

through a superconducting circuit containing two junctions causes the 

maximum supercurrent to show interference effects as a function of 

magnetic field intensity. 



Dc Josephson Effect 

Let ψ1 be the probability amplitude of electron pairs on one side of a 

junction, and let ψ2 be the amplitude on the other side, and both 

superconductors be identical. Apply the time-dependent Schrödinger 

equation                           to the two amplitudes gives 

Here ℏT represents the effect of the electron-pair coupling or transfer 
interaction across the insulator.

We thus obtain, with 



The current J of superconductor pairs across the junction depends on the 
phase difference 𝛿 as 

Separate and equate the real and imaginary parts and we get 

With no applied voltage a dc current will flow 

across the junction (shown in the right), with 

a value between J and −J according to the 

value of the phase difference  . 

This is the dc Josephson effect. 



Ac Josephson Effect 
Let a dc voltage V be applied across the junction. We can do this because the 

junction is an insulator. An electron pair experiences a potential energy 

difference qV on passing across the junction, where q = −2e. We can say that a 

pair on one side is at potential energy −eV and a pair on the other side is at eV. 

The equations of motion: 

Separate and equate the real and imaginary parts and we get 

and

;

and

With n1  ≃ n2, we have

The superconducting current is given by 

The current oscillates with frequency                       A dc voltage of 1 μV produces 

a frequency of 483.6 MHz. 



Macroscopic Quantum Interference 

The phase difference 𝜃2 − 𝜃1 around a closed circuit which encompasses a 

total magnetic flux Φ is given by                                     . 

We consider two Josephson junctions in parallel:  

Let the phase difference between points 

1 and 2 taken on a path through 

junction a be 𝛿a. When taken on a path 

through junction b, the phase difference 

is 𝛿b. In the absence of a magnetic field 

these two phases must be equal. 

Now let the flux Φ pass through the interior of the circuit, then

The total current is the sum of Ja and Jb , which is

or 



The current varies with Φ and has maxima when

The periodicity of the current is shown below. The short period variation is 

produced by interference from the two junctions. The longer period 

variation is a diffraction effect and arises from the finite dimensions of 

each junction—this causes Φ to depend on the particular path of 

integration. 

The field periodicity is 39.5 and 16 mG for A and B, respectively. 
Approximate maximum currents are 1 mA (A) and 0.5 mA (B). The junction 
separation is 3 mm and junction width 0.5 mm for both cases. The zero 
offset of A is due to a background magnetic field. 



High-Temperature Superconductors 
High-temperature superconductors (abbreviated high-Tc or HTS) are 

operatively defined as materials that behave as superconductors at the 

boiling point of liquid nitrogen (77K), one of the simplest coolants 

in cryogenics.

The first high-temperature superconductor was discovered in 1986, by IBM 

researchers Bednorz and Müller, who were awarded the Nobel Prize in 

Physics in 1987 "for their important break-through in the discovery of 

superconductivity in ceramic materials".

The main class of high-temperature superconductors are in the class of 

copper oxides. The second class of high-temperature superconductors in 

the practical classification is the class of iron-based compounds.

Some extremely-high pressure super-hydride compounds are usually 

categorized as high-temperature superconductors, which is not suitable for 

practical applications. The current Tc record holder is carbonaceous sulfur 

hydride (H2S + CH4 at 267 GPa) at 287K. 



Cuprates are layered materials, consisting of 

superconducting layers of copper oxide, 

separated by spacer layers. Their super-

conducting properties are determined by 

electrons moving within weakly coupled 

copper-oxide (CuO2) layers. Neighboring layers 

contain ions such as lanthanum, barium, 

yttrium, or other atoms which act to stabilize 

the structure and dope electrons or holes onto 

the copper-oxide layers. The unit cell of 

YBa2Cu3O7 (YBCO) consists of three perovskite 

unit cells, which is pseudocubic, nearly ortho-

rhombic. The structure has a stacking of 

different layers: (CuO) (BaO) (CuO2) (Y) (CuO2) 

(BaO) (CuO). One of the key feature of this unit 

cell is the presence of two layers of CuO2.

Structure of YBCO Cuprate

perovskite unit cells: A2+B4+(X-2)3



The undoped "parent" or "mother" compounds are Mott insulators with 

long-range antiferromagnetic order at sufficiently low temperatures. 

Certain aspects common to all materials have been identified.

Phase diagram of cuprate super-

conductors: Both standard cuprate 

super-conductors, YBCO and 

BSCCO, are notably hole-doped.

• The antiferromagnetic low-temperature 

state of undoped materials and the 

superconducting state that emerges 

upon doping, primarily the dx
2

-y
2 orbital 

state of the Cu2+ ions, suggest that 

electron-electron interactions are more 

significant than electron-phonon inter-

actions in cuprates, making the super-

conductivity unconventional. 

• Presence of a pseudogap phase appears 

up to at least optimal doping. 

• The weak isotope effects observed for 

most cuprates. 

Phase Diagram of Cuprates



Problems 

1. Structure of a vortex. (a) Find a solution to the London equation that 

has cylindrical symmetry and applies outside a line core. In cylindrical 

polar coordinates, we want a solution of 

       

that is singular at the origin and for which the total flux is the flux 

quantum: 

The equation is in fact valid only outside the normal core of radius 𝜉. 

(b) Show that the solution has the limits 



Problems 

2. Diffraction effect of Josephson junction. Consider a junction of 

rectangular cross section with a magnetic field B applied in the plane 

of the junction, normal to an edge of width w. Let the thickness of the 

junction be T. Assume for convenience that the phase difference of the 

two superconductors is 𝜋/2 when B = 0. Show that the dc current in 

the presence of the magnetic field is 

3. Meissner effect in sphere. Consider a sphere of a type I 

superconductor with critical field Hc. (a) Show that in the Meissner 

regime the effective magnetization M within the sphere is given by 

−8𝜋M/3 = Ba, the uniform applied magnetic field. (b) Show that the 

magnetic field at the surface of the sphere in the equatorial plane is 

3Ba/2. (It follows that the applied field at which the Meissner effect 

starts to break down is 2Hc/3.) Reminder: The demagnetization field of 

a uniformly magnetized sphere is −4𝜋M/3. 
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