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Discovery of Superconductivity

An infinitely high electrical conductivity is unthinkable because (1) a crystal
without a certain degree of disorder is inconceivable according to the
second law of thermodynamics, and (2) even in the absence of phonon and
defect scattering, electron-electron scattering will still cause resistance.
However, in the year 1911, Kamerlingh Onnes discovered that the electrical
resistance of mercury (Hg) approaches an unmeasurably small value when
it is cooled below 4.2 K. This phenomenon is called superconductivity.
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Magnetic Responses
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Vanishing resistance implies that the magnetic flux B-S through the closed
loop may not alter after cooling and after switching off the external field B,;.



Meissner-Ochsenfeld Effect

Because of the Meissner-Ochsenfeld effect, the magnetic state of a super-
conductor can be described as ideal diamagnetism. Persistent surface
currents maintain a magnetization M = -H_, in the interior, and this
magnetization is exactly opposite to the applied magnetic field H,,.
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If the magnetic field strength H,, is
further increased, then at a critical field
strength H. it is energetically more
favorable for the material to convert to
the normally conducting phase, in
which the magnetic field penetrates
the material. The phase boundary
between superconducting and normally
conducting states corresponds to the
critical magnetic field H, (T).



Change on Specific Heat

The transition of a metal from its normal state to a superconducting state
has nothing to do with a change of crystallographic structure. What actually
occurs in the transition is a thermodynamic change of state, or phase
transition, which is clearly manifest in other physical quantities. The specific
heat as a function of temperature, for example, changes discontinuously at
the transition temperature T. . The specific heat ¢, of a normally conducting
metal is composed of a lattice-dynamical part ¢, and an electronic part ¢, as
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At the transition to the superconducting state
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Superconducting Energy Gap

The energy gap of superconductors is of entirely different origin and nature
than the energy gap of insulators. In an insulator the energy gap is caused
by the electron-lattice interaction. This interaction ties the electrons to the
lattice. In a superconductor the important interaction is the electron-
electron interaction which orders the electrons in k space with respect to
the Fermi gas of electrons. The energy gap decreases continuously to zero
as the temperature is increased to the transition temperature T, indicating

a second-order phase transition.
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Isotope Effect

It has been observed that the critical temperature of superconductors varies
with isotopic mass. In mercury T, varies from 4.185 K to 4.146 K as the
average atomic mass M varies from 199.5 to 203.4 atomic mass units. The
transition temperature changes smoothly when we mix different isotopes of
the same element. The experimental results within each series of isotopes
may be fitted by a relation of the form M“T_ = constant. From the dependence
of T. on the isotopic mass we learn that lattice vibrations and hence electron-
lattice interactions are deeply involved in superconductivity. The original BCS
model gave the result T, & 0p,e X M2, s0 that a = %, but the inclusion of
coulomb interactions between the electrons changes the relation.

Experimental values of @ in M*T, = constant, where M is the isotopic mass.

Substance a Substance a

/n 0.45 £ 0.05 Ru 0.00 = 0.05
Cd 0.32 = 0.07 Os 0.15 = 0.05
Sn 0.47 = 0.02 Mo 0.33

Hg 0.50 = 0.03 Nb;Sn 0.08 = 0.02

Pb 0.49 = 0.02 VA 0.00 = 0.05



Free Energies

Fq The free energy density F, of a nonmagnetic
normal metal is approximately independent

| Normal state of the intensity of the applied magnetic field
i B,. At a temperature T < T, the metal is a
. superconductor in zero magnetic field, so

Free energy dOHSity

that F((T, 0) is lower than F,(T, 0) by

AF = F\(0) — Fy(0) = B2 /87 |,

Applied magnetic field B:l :_>
with
F«(B,) — F4(0) = B>87r ;and Fy(B,.) = F5(0) .

At a finite T, the normal and super-

conducting phases are in equilibrium when

the magnetic field is such that their free
. energies F = U - TS are equal. Experimental
: curves of the free energies of the two
w1 phases for aluminum are shown in the left.
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London Theory

The London equations are a set of phenomenological equations in an
attempt to describe the Meissner effect.

We postulate that in the superconducting state the current density is
proportional to the vector potential A of the local magnetic field

. Maxwell

= - [C/ (41T/1L2)] A Differential equations
Vxj = - [c/(411 2)] VXA = - [c/(4m12)] B V-E=dmp
VXVxB = (4m/c) Vxj = - [1/(1,2)] B V.B =0

V2B = B/(1,2)

In one dimensional case, we have VxE__19B

c Ot
B(x) = B(0) exp(—x/A;)

1 E



London Penetration Depth

In the pure superconducting state the only field allowed is exponentially
damped into the bulk from an external surface.

B(0)
|~
B(x) = B(0) exp(—x/A;)

B, ‘ B
T by A = (mc*/4mng®)">

> X

An applied magnetic field B, will penetrate a thin film fairly uniformly if
the thickness is much less than A; thus in a thin film the Meissner effect is
not complete. In a thin film the induced field is much less than B, and
there is little effect of B,,. It follows that the critical field H,of thin films in
parallel magnetic fields will be very high.



Coherence Length
The coherence length ¢ is a measure of the distance within which the super-
conducting electron concentration cannot change drastically in a spatially
varying magnetic field. Any spatial variation in the state of an electronic
system requires extra kinetic energy. A modulation of an eigenfunction
increases the kinetic energy because the modulation will increase the
integral of d?@/dx? .

Assume a strongly modulated wavefunction @(x) = 2-/2(gilk+a)x + eikx) then

oo = 3(eTNTDT 4 o) (IR Ta 4 oY) = 1 + cos gx . The kinetic energy is

Ny 7 _ R, R
de“’< 2mdx2)“"_2<2m>[<k+q>+k] o o

The increase of energy required to modulate is hA%kg/2m. If this increase

exceeds the energy gap E,, superconductivity will be destroyed. The critical
value g, of the modulation wavevector is given by %kﬂlo = E,

Define an intrinsic coherence length ¢, =1/q,, then

& = W’kp/2mE, = hw/2E,



Aand &

The coherence length ¢ and the actual penetration depth A depend on the
mean free path £ of the electrons measured in the normal state; the
relationships are indicated in figure below. They describe the structure of
the transition layer between normal and superconducting phases in contact.
In impure materials and in alloys the coherence length ¢ is shorter than &,.
When the superconductor is very impure, with a very small £, then é=

(é,0)Y% and A = A[(&,/€)V?, so that A/E = A /€. This is the “dirty
superconductor” limit.

Intrinsic Pippard London
\ i coherence penetration
& length &, depth A,
Metal in107% cm in 10 cm M/é
Sn 23, 3.4 0.16
Al 160. 1.6 0.010
Pb 8.3 3.7 0.45
Cd 76. 11.0 0.14
0 | | | | Nb 3.8 3.9 1.02



Coherence Length

Minimize the total free energy [dV F((r) with respect to variations in (r),
then 8/dV Fy = [dV 8y [—aih + Bl |*Y + (1/2m)(—ihV —gA/c)* ] + c.c.

This integral is zero if the term in brackets is zero:

[(12m)(—=ihV — gA/c)* — a + By [l =0

This is Ginzburg-Landau equation; it resembles a Schrodinger equation for (.

The intrinsic coherence length ¢ can be defined from the GL equation with A
= 0 and neglecting BliyI*, in one dimension the above GL equation becomes

%2 d*y . 2 1/2
o g ap Y = cexp(in/€), and &= (A*/2ma)

Consider the situation representing the boundary of a type | superconductor
and a normal metal. Retain the nonlinear term glyl* in the GL equation:

_—7;1— —ay + B[’y =0 , with boundary conditions ((0) =0, (=) = ¢,
then P(x) = (a/B)Ptanh(x/V2¢)



Penetration Depth

Deep inside the superconductor the free energy is a minimum when
l> = a/B,S0 Fy=Fy—o?2B=Fy— HYS7w , H,= (4ma’/B)"* .

F.is the stabilization free energy density of the superconducting state at
the thermodynamic critical field H..

Consider the penetration depth of a weak magnetic field (B << H,) into a
superconductor. We assume that || in the superconductor is equal to
|yl , the value in the absence of a field. Then the equation for the

supercurrent flux reduces to jy(r) = —(qz/mc)\gbo|2A :

which is just the London eq. js(r) = —(c/4mA%)A,
with the penetration depth

L ( me )1/2 B (mc2,3 )1/2
477(72 o |2 477(72“ |
The dimensionless ratio ,, = NE of the two characteristic lengths, the

penetration depth A and coherence length &, is an important parameter in
the theory of superconductivity. Then e ( B )1/2

qgh \2m




Upper Critical Field

At the onset of superconductivity || is small and the GL equation can be

written as: |
o (TIV — gAY =aiy or with A = B(0, x, 0)

i o ag> ( qB )2
— + + 7+ =
2m <8x2 0z i 2m\ dy ¢ )= e

We look for a solution in the form exp[i(k,y + k,z)]¢(x) and find

(1/2m)[ —h*d*/dx* + h*k> + (ﬁky — gBx/c)’]le = ag
g
(12m)[—t°d*/dx® + (¢°BYc*)x* — (2hkgBlex]e = E¢  E = a — (B*/2m) (k3 + k2)

with X = x — x, x, = ik, gB/2mec,

h* 2v2 272
%ﬁ + 2171(6]3/1%0) Xlo=(E+#h ky/2m)go

This is the equation for an harmonic oscillator.



The largest value of the magnetic field B for which solutions exist is given
by the lowest eigenvalue, which is

sho = figB,,/2mc = a — #%k%/2m ,where w is the oscillator frequency gB/mc.

With k, set equal to zeroB,,,, = H,, = 2amc/qh .

In terms of the thermodynamic critical field H. and the GL parameter k = A/§ :

H,
H, = 2ame | e \[ me ,8 H = NP okH.
gh (4ma’/B) fig \ 2m

When A/&>1/V2 , a superconductor has H,, > H. and is said to be of type II.

In terms of the flux quantum ®, = 27#ic/qg and & = A*2ma:

2mea qPy R D,
qh omhe 2maé 27T§2

ch _

This says at the upper critical field (H,,) the flux density is equal to one flux

quantum per area 2mé?, consistent with a fluxoid lattice spacing of the order
of ¢.



BCS Theory of Superconductivity

The basis of a quantum theory of superconductivity was laid by the classic
1957 papers of Bardeen, Cooper, and Schrieffer, which includes:
1. An attractive interaction manifests between electrons.

P(e) | P(e) > E,
|

1 1 \%

-
—?ﬁ___________

I
GF EF
€ —> € —>

(a) (b)
The central feature of the BCS state is that the one-particle orbitals are
occupied in pairs: if an orbital with wavevector k and spin up is occupied,
then the orbital with wavevector -k and spin down is also occupied. If k] is
vacant, then-k is also vacant. The pairs are called Cooper pairs and have
spin zero as well as many attributes of bosons.



Electron Lattice Interaction

. .
©

An electron moving through a conductor will
attract nearby positive charges in the lattice. This
deformation of the Iattice causes another
electron, with opposite spin, to move into the
region of higher positive charge density. The two
electrons then become correlated. Because
there are a lot of such electron pairs in a
superconductor, these pairs overlap very
strongly and form a highly collective condensate.

In this "condensed" state, the breaking of one pair will change the energy of

the entire condensate, not just a single pair. The energy required to break any
single pair is related to the energy required to break all of the pairs. The
electrons stay paired together and flow as a whole will not experience
resistance. Thus, the collective behavior of the condensate is a crucial
ingredient necessary for superconductivity.



2. The electron-lattice-electron interaction leads to an energy gap of
the observed magnitude.

3. The penetration depth and the coherence length emerge as natural
conseguences of the BCS theory.

4. The criterion for the transition temperature of an element or alloy
involves the electron density of orbitals D(e;) of one spin at the Fermi
level and the electron-lattice interaction U, which can be estimated
from the electrical resistivity because the resistivity at room
temperature is a measure of the electron-phonon interaction. For
UD(e;) << 1 the BCS theory predicts

T.=1.140 exp[-1/UD(€)]

where 6 is the Debye temperature and U is an attractive interaction.

5. Magnetic flux through a superconducting ring is quantized and the
effective unit of charge is 2e rather than e.



EM Field Intensity Approximation

Let (r) be the particle probability amplitude. We suppose that the pair
concentration n = ¢*( = constant. Then, we can write

= /2 i 0r) : U = V2 p=i60)
From the Hamilton equations of mechanics,
_ 1 q _ 1 . q
V — m (p - EA> ~—m <—Zﬁv— EA)

so that the electric current density is

. nq q
J - q¢*le - m(ﬁV@ - EA) .

We can thus obtain
2

n
Vxj= —m—qCB ., the London equation.

We recall that the Meissner effect is a consequence of the London equation,
which we have here derived.



Flux Quantization in a Superconducting Ring

Flux lines The flux through the ring is the sum of the
flux @, from external sources and the flux
®.. from the superconducting currents
which flow in the surface of the ring;

c q) = cDext + q)SC ‘
/ / \ \ The Meissner effect tells us that B and j are
/ \ zero in the interior. So, we will have
hcVO = gA .

The change of phase on going around the ring is

35 Vo -dl = 0,— 6, =2ms , where s is an integer.
By the Stokes theorem, C

fﬁ A‘dlZJ curlA)'da'ZJ B:do=® = &= 2whc/q)s
C C

(
C
By setting g = -2e, the quantum of flux in a superconductor (fluxoid)
IS ®, = 27hc/2e = 2.0678 X 1077 gauss cm”



Types of Superconductivity

Type 1

—47M

H,

C

Applied magnetic field B, —>
(a)

Pure specimens of many materials
exhibit this behavior; they are
called type | superconductors or,
formerly, soft superconductors.
The values of H, are always too
low for type | superconductors to
have application in coils for
superconducting magnets.

—47M

]
|
Type I1 S
|
|
|
|
|
|
Superconducting Vortex
state | state Normal
| | state
o cl o c H c2
Applied magnetic field B, —>
b)

Type Il or hard superconductors, usually
alloys, have superconducting electrical
properties up to a field denoted by H,,.
Between the lower critical field H., and
the upper critical field H, the flux
density B # 0 and the superconductor is
threaded by flux lines and is said to be
in the vortex state.



Type Il Superconductors (§ < A)

There is no difference in the mechanism of superconductivity in type | and

type Il superconductors. Both types have similar thermal properties at the
superconductor-normal transition in zero magnetic field. But the Meissner

effect is entirely different.
Superconducting region

/

Normal state cores

v




Vortex State in Type Il Superconductor

There is no chemical or crystallographic difference between the normal
and the superconducting regions in the vortex state. The vortex state is
stable when the penetration of the applied field into the superconducting
material causes the surface energy to become negative. A type Il
superconductor is characterized by a vortex state stable over a certain

range of magnetic field strength; namely, between H, and H,,.

Type I superconductor

E> A

B” + Bb

Normal

Type II superconductor
E<A

Normal

Bd

| e




Types of Superconductors

penetration depth A ; coherence length ¢ ; mean free path ¢

E= (E,0)V2and A = A (&,/€) 12

Type |
y(x)
: E>>A
>
X
H(x) i Type I
A>>§&
J A

XV
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elemental superconductors
predicted in 1950s by Abrikosov

§mm) | A@mm) | T (K) | He,(T) mm) | Amm) | T (K) | He,(T)
Al | 1600 |50 1.2 .01 Nb;Sn | 11 200 18 25
Pb | 83 39 7.2 .08 YBCO | L5 200 92 150
Sn | 230 51 3.7 .03 MgB, |5 185 37 14




Single Particle Tunneling

If the insulating barrier is sufficiently thin (less than 10 or 20 A) there is a
significant probability that an electron which impinges on the barrier will
pass from one metal to the other: this is called tunneling.

1@( 1\\ 1

Two metals, A and B, separated by (b) () (d)
a thin layer of an insulator C ~10 A. Preparation of an Al/Al.Os/Sn sandwich

; (a) Linear current-voltage relation for
5 5 i junction of normal metals separated
5 E l by oxide layer; (b) current-voltage
| relation with one metal normal and
xI/C the other metal superconducting.
Voltage Voltage

(a) (b)



Supercurrent Tunneling

In the superconductor there is an energy gap centered at the Fermi level.
At absolute zero no current can flow until the applied voltage is V = E, /2e
= A/e. The gap E, corresponds to the break-up of a pair of electrons in the
superconducting state, with the formation of two electrons, or an electron
and a hole, in the normal state. The current starts wheneV=A.

A Current

Y
\ l
| > Voltage

S N A /e~
(a) (b)

The density of states and the current-voltage characteristic for a tunneling
junction.



Josephson Superconductor Tunneling

The tunneling of superconducting electron pairs from a superconductor
into another superconductor has produced many remarkable effects:

Dc Josephson effect. A dc current flows across the junction in the absence
of any electric or magnetic field.

Ac Josephson effect. A dc voltage applied across the junction causes rf
current oscillations across the junction. This effect has been utilized in a
precision determination of the value of e/h. Further, an rf voltage applied
with the dc voltage can then cause a dc current across the junction.

Macroscopic long-range quantum interference. A dc magnetic field applied
through a superconducting circuit containing two junctions causes the
maximum supercurrent to show interference effects as a function of
magnetic field intensity.



Dc Josephson Effect

Let ¢, be the probability amplitude of electron pairs on one side of a
junction, and let ¢, be the amplitude on the other side, and both

superconductors be identical. Apply the time-dependent Schrédinger

equation indy/ot = Hy to the two amplitudes gives
0
ﬁﬂ—hwg ; ﬁﬂ—ﬁml |
Here AT represents the effect of the electron-pair coupling or transfer

interaction across the insulator. Let ¢, = n?¢'% and ¢, = nd? ¢'%. Then
89[/1 1 —-1/2 i6 8 801_ .

ihy 12 g, M2 90,

o —eme Tt %at:_’m'l‘

We thus obtain, with 6 =6, — 6,,

1 9n, 0, . 12 is
T +in, —— o = iT(nyny) e
19ny . 00 12 —is

53 + in, e —iT(nyny) "~ e



Separate and equate the real and imaginary parts and we get

%, 0
% = 2T(nyny)"*sin & : % = —2T(n;ny)"sin &
90 \12 90 12
a—tl=—T<Z—i> cosd ; 8—;:_T<%> cos &
: 861 . 802 8112 . _anl
ot ot > 9t ot

The current J of superconductor pairs across the junction depends on the

phase difference 6 as

J=]osind = J,sin (6, — 6,)

With no applied voltage a dc current will flow
across the junction (shown in the right), with

Current

a value between J and -J according to the /
value of the phase difference 6 =6, — 0,. /

This is the dc Josephson effect. /

Voltage



Ac Josephson Effect

Let a dc voltage V be applied across the junction. We can do this because the
junction is an insulator. An electron pair experiences a potential energy
difference gV on passing across the junction, where g = -2e. We can say that a
pair on one side is at potential energy —eV and a pair on the other side is at eV.

The equations of motion: i gy, /0t = ATy, — eV, ifi Oy /Ot = AT, + eVip,
Let ¢, = ni?e'? and i, = ny? e’ %. Then

1 on 00 ) B _ s 1 on 00 , 3 _ _;

5 a—tl + in, a—tl = ieVn,h~ ! — iT(nny)"? 66; 58_752 + ing 3_1:2 = —ieVnoh t —iT(nny) 2 e

Separate and equate the real and imaginary parts and we get
on, /ot = 2T(nyn,)"*sind and 96,/dt = (eV/h) — T(ny/n,)"* cos &

8”2/at = _2T<n1 n2>1/2 sin O and (992/(9t — _<8V/ﬁ/> - T(nl/n2>1/2 COS 0

With n1 = n2, we have 09(0, — 0,)/dt = 96/9t = —2eV/h

The superconducting current is given by | | = J, sin [8(0) — (2eVt/h)]

The current oscillates with frequency @ = 2¢V/i . A dc voltage of 1 uV produces
a frequency of 483.6 MHz.



Macroscopic Quantum Interference

The phase difference 6, — 8, around a closed circuit which encompasses a
total magnetic flux @ is given by 0, — 0, = (2e/fic)®
We consider two Josephson junctions in parallel:

/ Insulator a

Let the phase difference between points ]“f»
1 and 2 taken on a path through ) — L
junction a be 6,. When taken on a path Jrow ™
through junction b, the phase difference \,
is 0,. In the absence of a magnetic field Ty RN

these two phases must be equal. Insulator b

Now let the flux @ pass through the interior of the circuit, then

8, — 8, = (2e/hic)®, or 8b=60+ﬁicc1>; aazao—ﬁiccp.

The total current is the sum of J,and J, , which is

: : : d
Jtota = Jo {sm (80 + ﬁic b ) + sin (80 — ﬁicq) )} = 2([J, sin §;) cos eﬁ_c



The current varies with @ and has maxima when
e®/hic =sm , s =integer .

The periodicity of the current is shown below. The short period variation is
produced by interference from the two junctions. The longer period
variation is a diffraction effect and arises from the finite dimensions of

each junction—this causes ® to depend on the particular path of
integration. .

.-

Current —»

| ! | ! | ! | ! | ! | ! | ! | ! | ! | ! | !
-500 —-400 -300 -200 -100 0 100 200 300 400 500

Magnetic field (milligauss)

The field periodicity is 39.5 and 16 mG for A and B, respectively.
Approximate maximum currents are 1 mA (A) and 0.5 mA (B). The junction

separation is 3 mm and junction width 0.5 mm for both cases. The zero
offset of A is due to a background magnetic field.



High-Temperature Superconductors

High-temperature superconductors (abbreviated high-T. or HTS) are
operatively defined as materials that behave as superconductors at the
boiling point of liquid nitrogen (77K), one of the simplest coolants
in cryogenics.

The first high-temperature superconductor was discovered in 1986, by IBM
researchers Bednorz and Miller, who were awarded the Nobel Prize in
Physics in 1987 "for their important break-through in the discovery of
superconductivity in ceramic materials".

The main class of high-temperature superconductors are in the class of
copper oxides. The second class of high-temperature superconductors in
the practical classification is the class of iron-based compounds.

Some extremely-high pressure super-hydride compounds are usually
categorized as high-temperature superconductors, which is not suitable for
practical applications. The current T record holder is carbonaceous sulfur
hydride (H,S + CH, at 267 GPa) at 287K.



Structure of YBCO Cuprate

Cuprates are layered materials, consisting of
superconducting layers of copper oxide,
separated by spacer layers. Their super-
conducting properties are determined by
electrons moving within weakly coupled
copper-oxide (CuO,) layers. Neighboring layers
contain ions such as lanthanum, barium,
yttrium, or other atoms which act to stabilize
the structure and dope electrons or holes onto
the copper-oxide layers. The unit cell of
YBa,Cu;0, (YBCO) consists of three perovskite
unit cells, which is pseudocubic, nearly ortho-
rhombic. The structure has a stacking of
different layers: (CuO) (BaO) (Cu0O,) (Y) (CuO,)
(BaO) (CuO). One of the key feature of this unit
cell is the presence of two layers of CuO,.

e O
@ Cu

.Ba
Qv

perovskite unit cells: AZ*B4*(X2),



Phase Diagram of Cuprates

The undoped "parent" or "mother" compounds are Mott insulators with

long-range antiferromagnetic order at sufficiently low temperatures.
Certain aspects common to all materials have been identified.

The antiferromagnetic low-temperature
state of undoped materials and the
superconducting state that emerges
upon doping, primarily the d,” ? orbital
state of the Cu?* ions, suggest that
electron-electron interactions are more
significant than electron-phonon inter-
actions in cuprates, making the super-
conductivity unconventional.

Presence of a pseudogap phase appears
up to at least optimal doping.

The weak isotope effects observed for
most cuprates.
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Phase diagram of cuprate super-
conductors: Both standard cuprate
super-conductors, YBCO and
BSCCO, are notably hole-doped.



Problems

1. Structure of a vortex. (a) Find a solution to the London equation that

has cylindrical symmetry and applies outside a line core. In cylindrical
polar coordinates, we want a solution of

B—A2VB =0

that is singular at the origin and for which the total flux is the flux
quantum:

2T Jo dp pB(p) = ¥, .

The equation is in fact valid only outside the normal core of radius €.
(b) Show that the solution has the limits

B(p) = (®y2mA*) In(A/p) ,  (E<p<A)
B(p) = (®y27A>)(mA/2p)"* exp(—p/A) . (p>A)



Problems

2. Diffraction effect of Josephson junction. Consider a junction of
rectangular cross section with a magnetic field B applied in the plane
of the junction, normal to an edge of width w. Let the thickness of the
junction be T. Assume for convenience that the phase difference of the
two superconductors is /2 when B = 0. Show that the dc current in

the presence of the magnetic field is sin(wTBe/fic)

1= (wTBe/he)

3. Meissner effect in sphere. Consider a sphere of a type |
superconductor with critical field H.. (a) Show that in the Meissner
regime the effective magnetization M within the sphere is given by
-8mtM/3 = B, the uniform applied magnetic field. (b) Show that the
magnetic field at the surface of the sphere in the equatorial plane is
3B,/2. (It follows that the applied field at which the Meissner effect
starts to break down is 2H_/3.) Reminder: The demagnetization field of
a uniformly magnetized sphere is -4M/3.
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